Cho tam giác ABC vuông tại A,Ab=8cm,AC=6cm,AD là tia phân giác góc A,D thuộc BC
a,Tính DB/Dc
b,Tính BC,từ đó tính DB,DC làm tròn kết quar 2 chữ số thập phân
c,Kẻ đường cao AH(H thuộc BC).Chứng minh rằng tam giác AHB đồng dạng với tam giác CHA.Tính Diện tích tam giác AHB/Diện tích tam giác CHA
d,Tính AH
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC)
a, Tính DB\DC ; DB, DC
b, Kẻ đường cao AH (H thuộc BC) . CMR: Tam giác AHB đồng dạng tam giác CHA.
c, Tính diện tích tam giác AHB và CHA.
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC) a/ Tính DB, DC. b/ Kẻ đường cao AH (H thuộc BC). C/m rằng tam giác AHB đồng dạng với tam giác CHA c/ tính S tam giác AHB, tam giác CHA
cho tam giác ABCD vuông tại A,AB=8cm,AC=6cm ,AD=6cm AD là tia phangiac của góc A,Dla tia phân giác góc A,D thuộc BC
a, tính DB/DC
b, kẻ đường cao AH (H thuộc BC)chứng minh rằng tam giác AHB tương đương với tam giác CHA
c,tính S của tam giác AHB
d,tính S của tam giác CHA
cho tam giác abc vuông tại a,ab=8cm,ac=6cm.ad là tinh phân giác của góc a(d thuộc bc)
a tính db phần dc
b kẻ đường cao ah(h thuộc bc)
c chứng minh rằng tam giác ahb S tam giác CHA
d tính s tam giác ahb phần s tam giac CHA
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC)
a/ Tính DB, DC.
b/ Kẻ đường cao AH (H thuộc BC). C/m rằng tam giác AHB đồng dạng với tam giác CHA
c/ tính S tam giác AHB, tam giác CHA
cho tam giác ABC vuông tại A, AB=8cm,AC=6cm. AD là tia phân giác của góc A(D thuộc BC), đường cao AH(H thuộc BC). Chứng minh rằng:
a, tính DB/DC
b, Tính BC từ đó tính DB,DC rồi làm tròn kết quả đến chữ số thập phân thứ 2
c, tam giác AHB đồng dạng với tam giác CHA. Tính S AHB/ S CHA
Cho tam giác ABC vuông tại A, AB = 10, AC = 6, AD là tia phân giác góc A, D ∈ BC.
a) Tính DB/DC?
b) Kẻ đường cao AH (H ∈ BC). Chứng minh rằng: ΔAHB ∼ Δ CHA
c) Chứng minh AH2=BH.CH
d) Tính S AHB/ S CHA
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A,
D BC .
a). Tính DB/DC
b). Kẻ đường cao AH ( H BC ). Chứng minh rằng: ΔAHB đồng dạng ΔCHA .
c).Tính tỷ số diện tích của tam giác AHB và CHA |
d) Chứng minh AD2 =AB.AC – DB.DC
giúp mik với ạaa