A = \(x^2\) - 4\(x\) + 2018
A = \(x^2\) - 4\(x\) + 4 + 2014
A= (\(x\) - 2)2 + 2014
Vì (\(x\) - 2)2 ≥ 0; ⇒ (\(x\) - 2)2 + 2014 ≥ 2014
A(min) = 2014 ⇔ \(x\) - 2= 0 ⇔ \(x\) = 2
Kết luận giá trị nhỏ nhất của biểu thức A là 2014 xảy ra khi \(x\) = 2
B = 4\(x^2\) + 12\(x\) + 20
B = (4\(x^2\) + 12\(x\) + 9) + 11
B = 4.(\(x^2\) + 3\(x\) + \(\dfrac{9}{4}\)) + 11
B =4.(\(x^2\) + 2.\(\dfrac{3}{2}\)\(x\) + \(\left(\dfrac{3}{2}\right)^2\)) + 11
B = 4.(\(x\) + \(\dfrac{3}{2}\))2 + 11
Vì (\(x\) + \(\dfrac{3}{2}\))2 ≥ 0 ⇒ 4.(\(x\) + \(\dfrac{3}{2}\))2 + 11 ≥ 11
Vậy B(min) = 11 ⇔ \(x\) + \(\dfrac{3}{2}\) = 0⇔ \(x\) = - \(\dfrac{3}{2}\)
Kết luận giá trị nhỏ nhất của biểu thức B là: 11 xảy ra khi \(x\) = - \(\dfrac{3}{2}\)
A = - 4 + 2018
A = - 4 + 4 + 2014
A= ( - 2)2 + 2014
Vì ( - 2)2 ≥ 0; ⇒ ( - 2)2 + 2014 ≥ 2014
A(min) = 2014 ⇔ - 2= 0 ⇔ = 2
Kết luận giá trị nhỏ nhất của biểu thức A là 2014 xảy ra khi = 2
B = 4 + 12 + 20
B = (4 + 12 + 9) + 11
B = 4.( + 3 + ) + 11
B =4.( + 2. + ) + 11
B = 4.( + )2 + 11
Vì ( + )2 ≥ 0 ⇒ 4.( + )2 + 11 ≥ 11
Vậy B(min) = 11 ⇔ + = 0⇔ = -
Kết luận giá trị nhỏ nhất của biểu thức B là: 11 xảy ra khi = -