Đường tròn bàng tiếp trong góc A của tam giác ABC tiếp xúc với AC tại T. Gọi I là tâm dường tròn nội tiếp tam giác ABC. Cm Sabc = 2 Sait
cho đường tròn tam O nội tiếp tam giác ABC (AB<AC) tiếp xúc với các cạnh BC,CA,AB tương ứng tại D,E,F.Đườn tròn tâm O' bàng tiếp trong góc BAC của tam giác ABC tiếp xúc với cạnh BC và phần kéo dài của các cạnh AB,AC tương ứng tại các điểm P,M,N.
a)chứng minh BP=CD
b)trên đường thawngrMN lấy các điển I,K sao cho CK//AB,BI//AC. chứng minh các tứ giác BICE,BKCF là hình thang cân
c)gọi (S) là đường tròn đi qua ba điểm I,K,P.chứng minh(S) tiếp xúc với các đường thẳng BC,BI,CK
Cho tam giác ABC (AB<AC) có 3 góc nhọn nội tiếp đường tròn O bán kính R. Ba đường cao AD,BE,CF cắt nhau tại H. Gọi I là tâm đường tròn nội tiếp tam giác ABC, J là tâm đường tròn bàng tiếp góc A. Chứng minh: AI.AJ=AB.AC
Các bác giúp em, em đang cần gấp cách giải.Cảm ơn mọi người!!!
Cho tam giác ABC. Một đường tròn tâm O nội tiếp tam giác ABC và tiếp xúc với BC tại D. Đường tròn tâm I là đường tròn bàng tiếp trong góc A của tam giác ABC và tiếp xúc với BC tại F. Vẽ đường kính DE của đường tròn (O). Chứng minh ràng A, E, F thẳng hàng.
cho tam giác ABC , Đường tròn (I) nội tiếp tam giác tiếp xúc với cạnh BC tại D. Đường tròn (K) là đường tròn bàng tiếp trong góc A tiếp xúc với BC tại E. Gọi F là điểm đối xứng của D qua I. Chứng minh rằng
a) tam giác AIF đồng dạng với tam giác AKE
b) trung điểm của BC cũng là trung điểm của DE
ho tam giác abc nội tiếp đường tròn (o,r) goi I là tâm của đường tròn nội tiếp tam giác đó gọi M N P lần lượt là tâm của các đường tròn bàng tiếp trong các góc A, B, C. gọi K là điểm đối xứng của I qua O. Chứng minh rằng K laftaam đường tròn ngoại tiếp tam giác MNP
cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi I,K tương ứng là tâm các đường tròn nội tiếp tam giác ABH và tam giác ACH
1/Chứng minh tam giác ABC đồng dạng với tam giác HIK
2/ Đường thẳng IK cắt AB,AC lần lượt tại M,N
a/ Chứng minh tứ giác HNCK nội tiếp trong một đường tròn
b/ Chứng minh AM=AN
C/ Chứng minh S'<=1/2S trong đó S,S' lần lượt là diện tích tam giác ABC và tam giác AMN
cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi I,K tương ứng là tâm các đường tròn nội tiếp tam giác ABH và tam giác ACH
1/Chứng minh tam giác ABC đồng dạng với tam giác HIK
2/ Đường thẳng IK cắt AB,AC lần lượt tại M,N
a/ Chứng minh tứ giác HNCK nội tiếp trong một đường tròn
b/ Chứng minh AM=AN
C/ Chứng minh S'<=1/2S trong đó S,S' lần lượt là diện tích tam giác ABC và tam giác AMN
Cho tam giác ABC. D là tiếp điểm của đường tròn bàng tiếp góc A với BC.
a) Chứng minh rằng AB + BD = AC +CD.
b) Chứng minh rằng đường tròn bàng tiếp góc A của hai tam giác ADB và ADC tiếp xúc nhau.