\(\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(=x^2+y^2+z^2+2xy+2yz+2zx-x^2-y^2-z^2\)
\(=2xy+2yz+2zx\)
\(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+xz\right)\)
\(VT=\left(x+y+z\right)^2-x^2-y^2-z^2\)
\(VT=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2\)
\(VT=2xy+2yz+2xz\)
\(VT=2\left(xy+yz+xz\right)\)
\(VT=VP\left(đpcm\right)\)
* VT: vế trái
VP: vế phải
(x+y+z)2-x2-y2-z2 (1)
Ta co : 2(xy+yz+xz)
=2xy+2yz+2xz
=2xy+2yz+2xz+x2+y2+z2-x2-y2-z2
=(x+y+z)2-x2-y2-z2
Tu (1) suy ra dpcm