Bài 9:
a) △AOB có: AB//CD.
\(\Rightarrow\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{4}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}OA=\dfrac{4}{9}OC\\OB=\dfrac{4}{9}OD\end{matrix}\right.\) mà \(\left\{{}\begin{matrix}OA+OC=AC=12\\OB+OD=BD=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{9}OC+OC=12\\\dfrac{4}{9}OD+OD=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}OC=\dfrac{108}{13}\\OD=\dfrac{45}{13}\end{matrix}\right.\)
△ODC có: \(OC^2+OD^2=\left(\dfrac{108}{13}\right)^2+\left(\dfrac{45}{13}\right)^2=81=CD^2\)
\(\Rightarrow\)△ODC vuông tại O (định lí Py-ta-go đảo).
\(\Rightarrow\)AC⊥BD tại O.
\(\Rightarrow S_{ABCD}=\dfrac{AC.BD}{2}=\dfrac{12.5}{2}=30\left(cm^2\right)\)
b) Qua A dựng đường thẳng song song với BC cắt DC tại E.
Tứ giác ABCE có: AB//CE, AE//BC.
\(\Rightarrow\)ABCE là hình bình hành.
\(\Rightarrow AB=CE=9\left(cm\right);AE=BC=20\left(cm\right)\)
\(DE=DC-CE=30-9=21\left(cm\right)\)
*Hạ đường cao AH.
Theo định lí Py-ta-go trong 2 tam giác vuông AHD, AHE ta có:
\(\left\{{}\begin{matrix}DH^2+AH^2=AD^2\\EH^2+AH^2=AE^2\end{matrix}\right.\)
\(\Rightarrow\left(EH^2+AH^2\right)-\left(DH^2+AH^2\right)=AE^2-AD^2\)
\(\Rightarrow EH^2-DH^2=20^2-13^2=231\)
\(\Rightarrow\left(EH+DH\right)\left(EH-DH\right)=231\)
\(\Rightarrow21\left(EH-DH\right)=231\)
\(\Rightarrow EH-DH=11\) mà \(EH+DH=21\)
\(\Rightarrow EH=16;DH=5\)
Mà \(AH^2+DH^2=AD^2\)
\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)
\(S_{ABCD}=\dfrac{\left(AB+CD\right).AH}{2}=\dfrac{\left(9+30\right).12}{2}=234\left(cm^2\right)\)