a. -△IEC có: AF//IC \(\Rightarrow\dfrac{EF}{AE}=\dfrac{EI}{EC}\)
-△IEC có: AM//EI \(\Rightarrow\dfrac{EI}{AC}=\dfrac{AM}{AC}=\dfrac{EF}{AE}\)
\(\Rightarrow AM.AE=EF.AC\).
b. -△AMC và △EFA có:
\(\widehat{MAC}=\widehat{FEA}\)
\(\widehat{ACM}=\widehat{EAF}\)
\(\Rightarrow\)△AMC∼△EFA (g-g)
\(\Rightarrow\dfrac{S_{AMC}}{S_{EFA}}=\left(\dfrac{AM}{EF}\right)^2=\left(\dfrac{6}{2}\right)^2=9\)
\(\Rightarrow S_{AMC}=9S_{EFA}\)
c. -Qua D kẻ đg song song với BC cắt AM, AC tại H,G.
-△ABM có:DH//BM \(\Rightarrow\dfrac{DH}{BM}=\dfrac{AH}{AM}\)
-△ACM có:GH//CM \(\Rightarrow\dfrac{GH}{CM}=\dfrac{AH}{AM}=\dfrac{DH}{BM}\Rightarrow GH=DH\)
\(\Rightarrow\)H là t/đ DG.
-△EDG có: AH//ED, H t/đ DG \(\Rightarrow\)A t/đ EG.
-△EDG có: AF//DG, A t/đ EG\(\Rightarrow\)F t/đ ED.
\(\Rightarrow EF=FD\)