a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
góc BAE chung
Do đó: ΔABE=ΔACF
=>BE=CF
b:
Sửa đề Chứng minh BE+CF>BH+CH
BE>BH
CF>CH
=>BE+CF>BH+CH
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
góc BAE chung
Do đó: ΔABE=ΔACF
=>BE=CF
b:
Sửa đề Chứng minh BE+CF>BH+CH
BE>BH
CF>CH
=>BE+CF>BH+CH
Cho tam giác ABC cân tại A (góc A<40 độ), BE, CF là 2 đường cao, BM, CN là 2 phân giác của tam giác ABC. Chứng minh BCEF và EMNF là các hình thang cân
cho tam giác ABC cân tại a đường cao ak be cf cắt nhau tại h . gọi i là giao điểm của ah và ef chứng minh e và f đối xứng nhau qua ah.kể tên các tam giác đối xứng nhau qua đường thẳng ah có trong hình vẽ
Cho tam giác ABC cân tại A ( góc A < 40 độ) có BM,CN là hai đường phân giác của tam giác ABC.
a) Chứng minh BCMN là hình thang cân
b) BE,CF là hai đường cao của tam giác ABC. Chứng minh EMNF là hình thang cân.
1) Cho tam giác ABC cân tại A (góc A<90°) 2 đường cao BE và CF
a)cm tam giác ABE=Tam giác AFC
b)cm AH vuông góc với BC (với h là giao điểm BE và CF
c)cm tứ giác BFEC là hình thang cân
cho tam giác abc vuông cân tại a. điểm d thuộc bc sao cho bd=2dc. điểm f thuộc ab sao cho df vuông góc với ab. e là trung điểm của df. ae cắt bc tại m, be cắt ac tại n. a) chứng minh bf/fa=be/en=2 b) chứng minh tam giác aef đồng dạng với tam giác bdf và ae=1/3bc c) gọi p là giao điểm của am và cf. chứng minh fp=1/4fc
Bài 1
Cho tam giác ABC, có 3 góc nhọn. các đường cao AD,BE,CF cắt nhau tại H. Chứng minh
a/ HF . HC=HE . HB
b/tam giác AEF ~ tam giác ABC
c/ chứng minh H là giao điểm các đường phân giác trong của tam giác ABC
bài 2
cho tam giác SBC nhọn, có O là giao điểm hai đường cao BE và CF
a/chứng minh tam giác OFB ~ tam giác OEC và
tam giác SEB ~ tam giác SFC và suy ra OB . OE=OC . OF và SF . SB=SE . SC
b/ chứng minh tam giác SEO ~ tam giác BEC
cho tam giác ABC có 3 đường cao AD, BE, CF cắt nhau tại H
a, Chứng minh: tam giác ABC đồng dạng với tam giác CBF
b, Chứng minh: AH . HD = CH . HF
c, Chứng minh: tam giác BDF đồng dạng với tam giác ABC
d, Gọi K là giao điểm của DE và CF. Chứng minh rằng: HF . CK = HK . CF
Bài 6: Cho hình thang cân ABCD ( AB//CD) có ˆ
70oD
a) Tính số đo các góc ˆ
; ˆˆ
;BCA
b) Kẻ đường cao AH và BK của hình thang. Chứng minh DH = CK
Bài 7: Cho tam giác ABC cân tại A. kẻ phân giác BE, CF của các góc B và C.
a) Chứng minh tam giác AEF cân
b) Chứng minh ∆ BFC = ∆CEB
c) Chứng minh BFEC là hình thang cân
Bài 8: Cho MNK cân tại M có đường phân giác MH. Gọi I là một điểm nằm giữa M và H. Tia KI cắt MN tại
A, tia NI cắt MK tại B.
a. Chứng minh ABKN là hình thang cân.
b. Chứng minh MI vừa là đường trung trực của AB vừa là đường trung trực của KN.
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.