a,Ta có:A=-4(x2-2xy+y2)-(y2-10y+25)+37
= -4(x-y)2-(y-5)2+37
Vì -4(x-y)2≤0 ∀x,y
- (y-5)2 ≤0 ∀y
⇒ A= -4(x-y)2-(y-5)2+37 ≤37
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\Leftrightarrow x=y=5\)
Vậy,Max A=37⇔x=y=5
b,B=-x2-y2+xy+2x+2y
⇔4B=-4x2-4y2+4xy+8x+8y
= -[4x2-4x(y-2)+(y2-4y+4)]-3(\(y^2-2.\dfrac{2}{3}y+\dfrac{4}{9}\))+\(\dfrac{16}{3}\)
\(=-\left(2x-y+2\right)^2-3\left(y-\dfrac{2}{3}\right)^2+\dfrac{16}{3}\)
Vì \(-\left(2x-y+2\right)^2\le0\forall x,y\)
\(-3\left(y-\dfrac{2}{3}\right)^2\le0\forall y\)
\(\Rightarrow4B=-\left(2x-y+2\right)^2-3\left(y-\dfrac{2}{3}\right)^2+\dfrac{16}{3}\le\dfrac{16}{3}\)
\(\Leftrightarrow B\le\dfrac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-y+2=0\\y-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
Vậy,Max B=\(\dfrac{4}{3}\Leftrightarrow x=-\dfrac{2}{3};y=\dfrac{2}{3}\)