Bài 1: \(x^4-12x^2+27=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2-9\right)=0\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3};3;-3\right\}\)
Bài 1: \(x^4-12x^2+27=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2-9\right)=0\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3};3;-3\right\}\)
Cho điểm M thuộc nửa đường tròn đường kính AD sao cho (MA > MD).
Gọi I là trung điểm của AM. Kẻ MH ⊥ AD tại H. Chứng minh tứ giác OIMH nội tiếp.
cho diểm M thuộc nửa đường tròn đường kính AD SAO CHO ( MA>MD) . GỌI I là trung điểm của MA.Kẻ MH\(\perp\)AD tại H. Chứng minh tứ giác OIMH nội tiếp
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
Cho nửa đường tròn (O;R) đường kính BC. Lấy điểm A trên tia đối của tia BC. Kẻ tiếp tuyến AF của nửa đường tròn (O) ( với F là tiếp điểm) tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Biết AF=4R/3
a, Chứng minh tứ giác OBDF nội tiếp. Định tâm I đường tròn ngoại tiếp tứ giác OBDF
b, Tính Cos DAB
c, Kẻ OM vuông góc BC ( M thuộc AD). Chứng minh BD/DM-DM/AM=1
d, Tính diện tích phần hình tứ giác OBDM ở bên ngoài đường tròn (O)
1/ Từ một điểm M ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm)
a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này
b/ Cho MO = 2R CMR tam giác MAB đều
2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn
3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp
4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn
Giải giúp mk vs mk đang cần gấp
Cho đường tròn tâm O, đường kính AB, M là một điểm thuộc nửa đường tròn. Qua M vẽ vẽ tiếp tuyến với nửa đường tròn, gọi D và C theo thứ tự là các hình chiếu vuông góc của A và B.
a) Chứng minh M là trung điểm của CD
b) Chứng minh AB = BC + AD
c) Giả sử góc AOM > góc BOM. Từ B vẽ đường tròn vuông góc với BC, đường thẳng này cắt AD tại E. Chứng minh E thuộc nửa đường tròn tâm O
d) Xác định vị trí của M trên 1/2 O sao cho tứ giác ABCD có diện tích lớn nhất và tính diện tích đó theo nửa bán kính rồi theo 1/2 đường tròn đã cho.
Giúp em với ạ TvT
các bạn ơi giải giúp mình với ạ
CÂU 1 : cho điểm M nằm ngoài đường tròn (O;R). qua M vẽ tiếp tuyến MA với đường tròn,(A là tiếp điểm). kẻ AH vuông góc với OM, kẻ đường kính AD với đường tròn(o). đường trẳng MD cắt (O) tại điểm thứ hai I
CM: DI.DM=4R2 ; tứ giác AMIH nội tiếp và xác định tâm của đường tròn ngoại tiếp tứ giác đó ; chứng minh góc DOI = góc DHI
CÂU 2 : cho hình chứ nhật ABCD, I là trung điểm của CD, điểm E thuộc cạnh AB. Đường thẳng đi qua I và vuông góc với DE cắt AD ở H. đường thẳng đi qua I và vuông góc với CE cắt BC ở K. chứng minh EI vuông góc với HK
các bạn ơi mình cần gấp lắm giúp mình với ạ. mình cám ơn nhìu ^^
Cho đường tròn và điểm M ở ngoài đường tròn với OM >2R. Vẽ hai tiếp tuyến MA, MB và đường kính AD của đường tròn(O) (A, B là các tiếp điểm).Gọi C là giao điểm của MD với đường tròn(O) , H là giao điểm MO với AB . a)cm H là trung điểm AB. b)cm AC vuông góc với MD và tứ giác AHCM nội tiếp c)cm góc AMC= 1/2 góc CHD. d)gọi K là giao điểm MD với AB , I là giao điểm của BC với MH. cm 3 đường thẳng MB, IK, và HD đồng quy. Mấy bạn giải giúp mình nha, cảm ơn các bạn lắm
Cho nửa đường tròn tâm O đường kính AB. Trên cùng nửa mặt phătng bờ AB vẽ các tiếp tuyến Ax, By. Lấy điểm M bất kì thuộc nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB tại H.
a) Tính MH biết AH = 3cm, HB = 5cm.
b) Qua M kẻ tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C và D. Gọi I là giao điểm của AD và BC. Chứng minh M, I, H thẳng hàng.
c) Vẽ đường tròn tâm (O') nội tiếp tam giác AMB tiếp xúc AB ở K. Chứng minh diện tích tam giác AMB = AK.KB