Cách 1:
Xét ΔMNP có :
PM = PN ( gt )
⇒ ΔMNP cân.
⇒ ^PMN = ^PNM ( t/c Δcân )
Cách 2:
Từ P kẻ PI là phân giác ^MPN
Vì ΔMPN cân (PM = PN)
=> PI là phân giác đồng thời là trung trực
=> IM = IN
Xét ΔMPI và ΔNPI có:
PM = PN (gt)
P1 = P2 (PI là pg)
PI cạnh chung
=> ΔMPI = ΔNPI (c.g.c)
=> ^PMN = ^PNM ( 2 góc tg ứng)
Cách 1: Vẽ PA là tia phân giác của \(\widehat{P}\)
Xét \(\Delta PMA\)và \(\Delta PNA\)có:
PM=PN (gt)
\(\widehat{MPA}\)=\(\widehat{NPA}\)(vì PA là tia phân giác của \(\widehat{P}\))
PA là cạnh chung
=>\(\Delta MPA=\Delta NPA\)(c.g.c)
=>\(\widehat{PMN}=\widehat{PNM}\)(hai góc tương ứng)
Cách 2: Vẽ A là trung điểm của MN
Xét \(\Delta PMA\)và \(\Delta PNA\)có:
MP=NP (gt)
MA=NA (vì A là trung điểm của MN)
PA là cạnh chung
=>\(\Delta PMA=\Delta PNA\)(c.c.c)
=>\(\widehat{PMN}=\widehat{PNM}\)(hai góc tương ứng)
Vậy .....