a)
\(A=\dfrac{3}{\sqrt{3}+1}+\dfrac{2}{\sqrt{3}-1}=\dfrac{3\left(\sqrt{3}-1\right)}{3-1}+\dfrac{2\left(\sqrt{3}+1\right)}{3-1}=\dfrac{3}{2}\left(\sqrt{3}-1\right)+\sqrt{3}+1=\dfrac{3\sqrt{3}}{2}-\dfrac{3}{2}+\sqrt{3}+1=\dfrac{5\sqrt{3}}{2}-\dfrac{1}{2}\)
b)
\(B=\dfrac{\sqrt{5}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\dfrac{\sqrt{5}\left(3+\sqrt{5}\right)}{\sqrt{5}+3}+\dfrac{2\sqrt{2}}{2}=\sqrt{5}-\sqrt{5}+\dfrac{2\sqrt{2}}{2}=\dfrac{2\sqrt{2}}{2}\)