Bài 1:
a) \(=4x^2-20x-4x^2+7x-3+24x=11x-3\)
b) \(=y^2-9x^2+18xy-9x^2-18xy-9y^2=-18x^2-8y^2\)
c) \(=x^3+2x^2-x-2-x^3+8=2x^2-x+6\)
d) \(=1+4x+4x^2-2x-2+4x^2+x^2-2x+1=8x^2\)
Bài 2:
c) \(=64-\left(x^2-4xy+4y^2\right)=64-\left(x-2y\right)^2=\left(8-x+2y\right)\left(8+x-2y\right)\)
d) \(=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
e) \(=\left(x^4+16x^2+64\right)-16x^2=\left(x^2+8\right)^2-16x^2=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
f) \(=\left(a^4+4a^2b^2+4b^4\right)-4a^2b^2=\left(a^2+2b^2\right)^2-4a^2b^2=\left(a^2-2ab+2b^2\right)\left(a^2+2ab+2b^2\right)\)
g) \(=3x\left(x-2\right)-2\left(x-2\right)=\left(x-2\right)\left(3x-2\right)\)
Bài 3:
\(=47^2-2.47.37+37^2=\left(47-37\right)^2=10^2=100\)
Bài 4:
\(\Rightarrow\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+y+\dfrac{1}{4}\right)=0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)