c) Ta có: \(C=\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}=\sqrt{x}+\dfrac{1}{\sqrt{x}+1}=\left(\sqrt{x}+1\right)+\dfrac{1}{\sqrt{x}+1}-1\)
Áp dụng BĐT Cô-si ta có:
\(\sqrt{x}+1+\dfrac{1}{\sqrt{x}+1}\ge2\sqrt{\left(\sqrt{x}+1\right).\dfrac{1}{\sqrt{x}+1}}=2\)
\(\Rightarrow C\ge2-1=1\)
Dấu "=" xảy ra ⇔ \(\sqrt{x}+1=1\Leftrightarrow x=0\)
a)
Ta có: \(A=\sqrt{x}-1+\dfrac{4}{\sqrt{x}-1}\ge2\sqrt{\left(\sqrt{x}-1\right).\dfrac{4}{\sqrt{x}-1}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x}-1\right)^2=4\Leftrightarrow\sqrt{x}-1=2\Leftrightarrow x=9\)