Bài 2:
\(b,\Delta=4\left(m+1\right)^2-4m\left(m+2\right)\\ =4m^2+8m+4-4m^2-8m=4>0,\forall m\)
Vậy PT có 2 nghiệm phân biệt với mọi m
Khi đó \(\left[{}\begin{matrix}x=\dfrac{2\left(m+1\right)-2}{2}=m\\x=\dfrac{2\left(m+1\right)+1}{2}=m+2\end{matrix}\right.\)
Bài 3:
Gọi nghiệm chung 2 PT là \(x_1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-\left(m+4\right)x_1+m+5=0\left(1\right)\\x_1^2-\left(m+2\right)x_1+m+1=0\left(2\right)\end{matrix}\right.\\ \Leftrightarrow\left(1\right)-\left(2\right)=-\left(m+4\right)x_1+m+5+\left(m+2\right)x_1-m-1=0\\ \Leftrightarrow x_1\left(-m-4+m+2\right)+4=0\\ \Leftrightarrow-2x_1=-4\Leftrightarrow x_1=-2\)
Thay \(x_1=-2\) vào \(\left(2\right)\Leftrightarrow4+2\left(m+2\right)+m+1=0\)
\(\Leftrightarrow3m+9=0\Leftrightarrow m=-3\)
Bài 2:
\(a,\forall m=0\\ PT\Leftrightarrow-2\left(m-1\right)x=-2\left(m-1\right)\Leftrightarrow x=1\\ \forall m\ne0\\ \Delta=4\left(m-1\right)^2-8m\left(m-1\right)\\ =4m^2-8m+4-8m^2+8m\\ =4-4m^2\)
PT vô nghiệm \(\Leftrightarrow4-4m^2< 0\Leftrightarrow m^2>1\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)
PT có nghiệm kép \(\Leftrightarrow4-4m^2=0\Leftrightarrow\left(1-m\right)\left(1+m\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)
Khi đó \(x=\dfrac{2\left(m-1\right)}{2m}=\dfrac{m-1}{m}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow4-4m^2>0\Leftrightarrow-1< m< 1;m\ne0\)
Khi đó \(x=\dfrac{2\left(m-1\right)\pm\sqrt{4-4m^2}}{2m}=\dfrac{2\left(m-1\right)\pm2\sqrt{1-m^2}}{2m}=\dfrac{m-1\pm\sqrt{1-m^2}}{2}\)