Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trân

loading...  giúp e vs ạ 

Nguyễn Lê Phước Thịnh
7 tháng 11 2023 lúc 14:58

d: ĐKXĐ: \(x\notin\left\{1;-4;-1\right\}\)

\(\dfrac{3x-23}{\left(3x-3\right)\left(x+4\right)}-\dfrac{x-3}{x^2+5x+4}\)

\(=\dfrac{3x-23}{3\cdot\left(x-1\right)\left(x+4\right)}-\dfrac{x-3}{\left(x+1\right)\left(x+4\right)}\)

\(=\dfrac{\left(3x-23\right)\left(x+1\right)-3\left(x-3\right)\left(x-1\right)}{3\left(x-1\right)\left(x+1\right)\left(x+4\right)}\)

\(=\dfrac{3x^2+3x-23x-23-3\left(x^2-4x+3\right)}{3\left(x-1\right)\left(x+1\right)\left(x+4\right)}\)

\(=\dfrac{3x^2-20x-23-3x^2+12x-9}{3\left(x-1\right)\left(x+1\right)\left(x+4\right)}\)

\(=\dfrac{-8x-32}{3\left(x-1\right)\left(x+1\right)\left(x+4\right)}=\dfrac{-8}{3\left(x-1\right)\left(x+1\right)}\)

e: ĐKXĐ: \(x\notin\left\{3;-1;1\right\}\)

\(\dfrac{24-6x}{\left(x-3\right)\left(x+1\right)}-\dfrac{6x-9}{1-x^2}\)

\(=\dfrac{24-6x}{\left(x-3\right)\left(x+1\right)}+\dfrac{6x-9}{\left(x-1\right)\cdot\left(x+1\right)}\)

\(=\dfrac{\left(24-6x\right)\left(x-1\right)+\left(6x-9\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{24x-24-6x^2+6x+6x^2-18x-9x+27}{\left(x-3\right)\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{3x+3}{\left(x-3\right)\left(x+1\right)\left(x-1\right)}=\dfrac{3}{\left(x-1\right)\left(x-3\right)}\)

f: ĐKXĐ: \(x\notin\left\{0;3\right\}\)

\(\dfrac{x^2+x+6}{x^3-27}-\dfrac{1-x}{3x-x^2}\)

\(=\dfrac{x^2+x+6}{\left(x-3\right)\left(x^2+3x+9\right)}-\dfrac{x-1}{x\left(x-3\right)}\)

\(=\dfrac{x\left(x^2+x+6\right)-\left(x-1\right)\left(x^2+3x+9\right)}{x\left(x-3\right)\left(x^2+3x+9\right)}\)

\(=\dfrac{x^3+x^2+6x-x^3-3x^2-9x+x^2+3x+9}{x\left(x-3\right)\left(x^2+3x+9\right)}\)

\(=\dfrac{-x^2+9}{x\left(x-3\right)\left(x^2+3x+9\right)}=\dfrac{-x-3}{x\left(x^2+3x+9\right)}\)

g: ĐKXĐ: x<>-2

\(x-2-\dfrac{x^2-10}{x+2}\)

\(=\dfrac{\left(x-2\right)\left(x+2\right)-x^2+10}{x+2}\)

\(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)

h: \(\dfrac{x}{y^2-xy}-\dfrac{y}{xy-x^2}\)

\(=\dfrac{x}{y\left(y-x\right)}-\dfrac{y}{x\left(y-x\right)}\)

\(=\dfrac{x^2-y^2}{xy\left(y-x\right)}=\dfrac{-x-y}{xy}\)


Các câu hỏi tương tự
Dorae mon
Xem chi tiết
Mina Anh
Xem chi tiết
khang
Xem chi tiết
khang
Xem chi tiết
Dorae mon
Xem chi tiết
Mina Anh
Xem chi tiết
Trân
Xem chi tiết
Mikey
Xem chi tiết
Mikey
Xem chi tiết
Bảo Trân
Xem chi tiết