Cho \(a_n=\left(\frac{5-\sqrt{21}}{2}\right)^n+\left(\frac{5+\sqrt{21}}{2}\right)^n\)CMR: \(a_n\)là số nguyên với mọi n là số tự nhiên. Tìm dư khi chia số đó cho 5
Bài 1: Tìm số nguyên a lớn nhất sao cho số \(T=4^{27}+4^{1016}+4^a\) là số chính phương
Bài 2: Cho số tự nhiên \(N=2003^{2004}\). Viết N thành tổng của k số tự nhiên nào đó \(n_1,n_2,...,n_k.\)\(S=n_1^3+n_2^3+...+n_k^3.\)Tìm số dư của phép chia S cho 6.
Bài 3: CMR: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)
Với n là số nguyên dương
Với mỗi số nguyên dương n≤2008Đặt Sn an bn với a 3 √52 và b 3−√52 CMR với n≥1 ta có Sn−2 √5 12 n− √5−12 n 2
Câu1: Cm rằng mọi số tự nhiên n thì n2 +n+1 không chia hết cho 9
Câu 2: Cm rằng n6 - n4 - n2+1 chia hết cho 128 với n thuộc N ; n lẻ
Câu 3: Tìm số tự nhiên n sao cho n+24 và n-65 là 2 số chính phương
Câu 4: Cm B= a5 - 5a3 + 4a chia hết cho 120
Câu 5 :Tìm số tự nhiên n sao cho A=n2 + n+6 là số chính phương
Câu 1 : Tìm số tự nhiên n sao cho n+24 va n-65 là hai số chính phương
Câu 2 :
a, Cmr với 3 số a,b,c bất kì ta có :\(a^2+b^2+c^2\ge ab+bc+ca\)
b, Tính giá trị biểu thức : \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}\)
CMR: với mọi số tự nhiên n thì:
\(\sqrt{1^3+2^3+3^3+...+n^3}=1+2+3+...+n\)
cho \(S_n=\left(\frac{3+\sqrt{5}}{2}\right)^n+\left(\frac{3-\sqrt{5}}{2}\right)^n-2\)là một số tự nhiên
Tìm số tự nhiên n để Sn là số chính phương
Với mỗi số nguyên dương \(n\le2008\), đặt \(S_n=a^n+b^n\) với \(a=\dfrac{3+\sqrt{5}}{2},b=\dfrac{3-\sqrt{5}}{2}\). CMR: Với mọi n thỏa mãn điều kiện đề bài, Sn là số nguyên.