Chọn B
Số phần tử của không gian mẫu:
Gọi A là biến cố thỏa mãn yêu cầu bài toán:
nên n(A) = 8
Vậy
Chọn B
Số phần tử của không gian mẫu:
Gọi A là biến cố thỏa mãn yêu cầu bài toán:
nên n(A) = 8
Vậy
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Tính xác suất P để hiệu số chấm trên các mặt xuất hiện của hai con súc sắc bằng 2.
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Xác suất tổng số chấm trên mặt xuất hiện của hai con súc sắc đó không vượt quá 5 bằng:
Gieo đồng thời hai con súc sắc. Xác suất để số chấm trên mặt xuất hiện của cả hai con súc sắc đều là số chẵn bằng
A. 1 4
B. 1 12
C. 1 36
D. 1 6
Gieo 3 con súc sắc cân đối, đồng chất và quan sát số chấm xuất hiện. Khi đó:
b) Xác suất để tổng số chấm xuất hiện trên mặt ba con súc sắc bằng 12 là:
A. 25/216
B. 1/8
C. 1/6
D. 1/3
Gieo đồng thời hai con súc sắc. Tính xác suất sao cho:
a. Hai con súc sắc đều xuất hiện mặt chẵn.
b. Tích các số chấm trên hai con súc sắc là số lẻ.
Gieo 3 con súc sắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên 3 con súc sắc đó bằng nhau:
A. 5 36
B. 1 9
C. 1 18
D. 1 36
Gieo hai con súc sắc cân đối. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc là 7?
A. 1/12
B. 1/6
C. 1/7
D. 5/36
Gieo ngẫu nhiên hai con súc sắc cân đối và đồng chất a, mô tả không gian mẫu b, tính xác suất của biến cố A ,tổng số chấm xuất hiện trên hai con xúc xắc bằng 3 B, hiệu chấm xuất hiện trên hai con xúc xắc bằng 3
Gieo một con súc sắc cân đối và đồng chất. Giả sử súc sắc xuất hiện mặt b chấm. Xác suất để phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt là