Đáp án D
Phương pháp:
+) Phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt ⇔ ∆ > 0
Cách giải:
Phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt ⇔ ∆ = b 2 - 8 > 0
Vì b là số chấm của con súc sắc nên
Vậy xác suất cần tìm là 4 6 = 2 3
Đáp án D
Phương pháp:
+) Phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt ⇔ ∆ > 0
Cách giải:
Phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt ⇔ ∆ = b 2 - 8 > 0
Vì b là số chấm của con súc sắc nên
Vậy xác suất cần tìm là 4 6 = 2 3
Gieo một con súc sắc cân đối và đồng chất. Giả sử súc sắc xuất hiện mặt b chấm. Xác suất để phương trình x 2 + b x + 2 = 0 có hai nghiệm phân biệt là ?
A. 1 2
B. 1 3
C. 5 6
D. 2 3
Gieo một con súc sắc cân đối và đồng chất. Giả sử súc sắc xuất hiện mặt b chấm. Xác suất để phương trình x 2 + 2bx + 4 = 0 có nghiệm là
A . 1
B . 2 3
C . 1 6
D . 5 6
Gieo một con súc sắc cân đối và đồng nhất. giả sử con súc sắc xuất hiện mặt b chấm. Xét phương trình x 2 + b x + 2 = 0 . Tính xác suất sao cho:
a. Phương trình có nghiệm
b. Phương trình vô nghiệm
c. Phương tring có nghiệm nguyên.
Gieo một con súc sắc cân đối và đồng chất. Giả sử con súc sắc xuất hiện mặt b chấm. Tính xác suất sao cho phương trình (x là ẩn số) có nghiệm lớn hơn 3.
A.
B.
C.
D.
Kết quả (b;c) của việc gieo con súc sắc cân đối và đồng chất hai lần (trong đó b là số chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai) được thay vào phương trình x 2 + b x + c x + 1 = 0 (*). Xác suất để phương trình (*) vô nghiệm là :
A. 17 36
B. 1 2
C. 1 6
D. 19 36
Kết quả (b,c)của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó b là số chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai x 2 + b x + c = 0
Tính xác suất để
a) Phương trình vô nghiệm;
b) Phương trình có nghiệm kép;
c) Phương trình có nghiệm.
Kết quả (b,c) của việc gieo con súc sắc cân đối và đồng chất hai lần, trong đó blà số chấm xuất hiện trong lần gieo đầu, clà số chấm xuất hiện ở lần gieo thứ hai, được thay vào phương trình bậc hai x2 + bx + c = 0. Tính xác suất để phương trình có nghiệm.
A. 19 36
B. 1 18
C. 1 2
D. 17 36
Gieo một con xúc sắc cân đối và đồng chất một lần. Giả sử con xúc sắc xuất hiện mặt k chấm. Xét phương trình . Tính xác suất để phương trình trên có 3 nghiệm thực phân biệt
A.
B.
C.
D.
Gieo đồng thời hai con súc sắc cân đối và đồng chất. Tính xác suất P để hiệu số chấm trên các mặt xuất hiện của hai con súc sắc bằng 2.