Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Diệp Nguyễn Thị Huyền

Giair phương trình nghiệm nguyên:  \(y^2=1+x+x^2+x^3+x^4\)

Nguyễn Việt Lâm
28 tháng 7 2021 lúc 22:57

\(4y^2=4x^4+4x^3+4x^2+4x+4\)

Ta có:

\(4x^4+4x^3+4x^2+4x+4=\left(2x^2+x\right)^2+\left(3x^2+4x+4\right)>\left(2x^2+x\right)^2\)

\(4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2-5x^2\le\left(2x^2+x+2\right)^2\)

\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}\left(2y\right)^2=\left(2x^2+x+1\right)^2\\\left(2y\right)^2=\left(2x^2+x+2\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-3=0\\5x^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=3\end{matrix}\right.\)

- Với \(x=-1\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=0\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=3\Rightarrow y^2=121\Rightarrow y=\pm11\)


Các câu hỏi tương tự
Duartte Monostrose Neliz...
Xem chi tiết
Mai Xuân Vinh
Xem chi tiết
võ dương thu hà
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Fire Sky
Xem chi tiết
Bình Trần
Xem chi tiết
Messi
Xem chi tiết
Trần TIến Đạt
Xem chi tiết
Trần Minh Trí
Xem chi tiết