\(=\dfrac{2x}{x-5}+\dfrac{x}{x+5}+\dfrac{-20x}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{2x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}+\dfrac{x\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}+\dfrac{-20x}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{2x^2+10x+x^2-5x-20x}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{3x^2-15x}{\left(x-5\right)\left(x+5\right)}\\ =\dfrac{3x}{x+5}\)