giải pt \(10+\sqrt{3}x^3+3x+\frac{\sqrt{3}}{x^3}=5\sqrt{3}x^3+2x+\frac{2\sqrt{3}-1}{x}+\frac{5}{x^2}\)
Câu 1 : Giải pt: \(8x^2+\sqrt{\frac{1}{x}}=\frac{5}{2}\)
Câu 2: Giải pt: \(\frac{2x^2}{\left(3-\sqrt{9+2x}\right)^2}=x+21\\\)
giải pt \(\sqrt{8-x^2}+\sqrt{\frac{x^2-2}{2x^2}}=5-\frac{1+x^2}{x}\)
Giải PT:
\(\frac{5}{x^2}+\frac{2x}{\sqrt{x^2+5}}=1\)
Giải pt:
a.\(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=4\)
b.\(\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
Giải PT: \(\sqrt{x+1}-2\sqrt{4-x}=\frac{5\left(x-3\right)}{\sqrt{2x^2+18}}\)
a) tìm các số nguyên x,t thỏa mãn 2y(2x2-1) - 2x(2y2-1)+1=x3y3
b) giải pt 2x2 +2x+1=(2x+3)(\(\sqrt{x^2+x+2}\)- 1)
c) giải hệ pt \(\hept{\begin{cases}x^2+y^2+\frac{8xy}{x+y}=16\\\sqrt{x^2+12}+\frac{5}{2}\sqrt{x+y}=3x+\sqrt{x^2+5}\end{cases}}\)
Giải pt \(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)
giải pt
\(\sqrt{x^2+3x}+2\sqrt{x+2}=2x+\sqrt{x+\frac{6}{x}+5}\)