Đặt \(\frac{1}{x}+x=a\)
Thì pt thành a2 - a - 14 = 0
Tới đây thì đơn giản rồi
Đặt \(\frac{1}{x}+x=a\)
Thì pt thành a2 - a - 14 = 0
Tới đây thì đơn giản rồi
Giải pt: \(x^2-2x-1+\frac{2}{x}+\frac{1}{x^2}=0\)
Giải pt: \(\left(\frac{x+2}{x+1}\right)^2+\left(\frac{x-2}{x-1}\right)^2-\frac{5x^2-4}{2x^2-1}=0\)
Giair pt sau : \(x^2-x-\frac{1}{x}+\frac{1}{x^2}-10=0\)
Giải pt \(\left(\frac{x+2}{x+1}\right)^2+\left(\frac{x-2}{x-1}\right)-\frac{5x^2-4}{2x^2-1}=0\)
Giải pt \(\frac{2x^{^2}}{\left(x+1\right)^2}-\frac{5x}{x+1}+3=0\)
1/ cho x,y>0.CM
\(\frac{x\sqrt{y}+y\sqrt{x}}{x+y}-\frac{x+y}{2}\le\frac{1}{4}\)
2/ giải pt \(x^2-6x+4+2\sqrt{2x-1}=0\)
giải pt \(10+\sqrt{3}x^3+3x+\frac{\sqrt{3}}{x^3}=5\sqrt{3}x^3+2x+\frac{2\sqrt{3}-1}{x}+\frac{5}{x^2}\)
Giải pt sau :\(\frac{25}{x}+9\sqrt{9x^2-4}=\frac{2}{x}+\frac{18}{x^2+1}\)
B2: Cho x;y >0 .Tìm min \(B=\left(3+\frac{1}{x}\right)\left(3+\frac{1}{y}\right)\left(2+x+y\right)\)
Giải pt : \(\frac{2x^4}{\left(x^2+1\right)^2}+\frac{3x^2}{x^2+1}-2=0\)