\(\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^3-x^2+x+x^2-x+1-2x=x\left(x^2-1\right)\)
\(\Leftrightarrow x^3-2x+1-x^3+x=0\)
\(\Leftrightarrow-x=-1\Leftrightarrow x=1\)
Bài làm:
Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^3-1-2x=x^3-x\)
\(\Leftrightarrow x=-1\)
( x - 1 )( x2 + x + 1 ) - 2x = x( x - 1 )( x + 1 )
<=> x3 - 1 - 2x = x( x2 - 1 )
<=> x3 - 1 - 2x = x3 - x
<=> x3 - 1 - 2x - x3 + x = 0
<=> -x - 1 = 0
<=> -x = 1
<=> x = -1
Vậy nghiệm của phương trình là x = -1
(x-1)(x²+x+1)–2x=x(x−1)(x+1)
⇔ x^3+1−2x=x(x^2−1)
⇔ x^3+1−2x=x^3−x
⇔ x^3−x^3−2x+x=−1
⇔ −x=−1
⇔ x=1
\(\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^3+x^2+x-x^2-x-1=x\left(x^2+x-x-1\right)\)
\(\Leftrightarrow x^3-1=x^3-x\)
\(\Leftrightarrow x^3-1-x^3+x=0\Leftrightarrow-1+x=0\)
\(\Leftrightarrow x=1\)