Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Việt_DL01

Giải pt : \(\sqrt[3]{9x^2-15x+9}+\sqrt{x^3+3x^2-3x+1}+x=2\)

 

Mr Lazy
17 tháng 7 2015 lúc 19:10

ĐK: \(x^3+3x^2-3x+1\ge0\)

\(pt\Leftrightarrow\sqrt[3]{9x^2-15x+9}-\left(2-x\right)+\sqrt{x^3+3x^2-3x+1}=0\)

\(\Leftrightarrow\frac{9x^2-15x+9-\left(2-x\right)^3}{A^2+AB+B^2}+\sqrt{x^3+3x^2-3x+1}=0\)

\(\left(A=\sqrt[3]{9x^2-15x+9};\text{ }B=2-x\right)\)\(\text{(}A^2+AB+B^2=\left(A+\frac{B}{2}\right)^2+\frac{3B^2}{4}>0\text{)}\)

\(\Leftrightarrow\frac{x^3+3x^2-3x+1}{A^2+AB+B^2}+\sqrt{x^3+3x^2-3x+1}=0\)

\(\Leftrightarrow\sqrt{x^3+3x^2-3x+1}\left(\frac{\sqrt{x^3+3x^2-3x+1}}{A^2+AB+B^2}+1\right)=0\)

\(\Leftrightarrow x^3+3x^2-3x+1=0\text{ (do }\frac{\sqrt{x^3+3x^2-3x+1}}{A^2+AB+B^2}+1>0\text{)}\)

\(\Leftrightarrow\left(x+1+\sqrt[3]{2}+\sqrt[3]{4}\right)\left[x^2+\left(2-\sqrt[3]{2}-\sqrt[3]{4}\right)x+\sqrt[3]{2}-1\right]=0\)

\(\Leftrightarrow x+1+\sqrt[3]{2}+\sqrt[3]{4}=0\text{ (}pt\text{ }x^2+\left(2-\sqrt[3]{2}-\sqrt[3]{4}\right)x+\sqrt[3]{2}-1=0\text{ vô nghiệm do }\Delta


Các câu hỏi tương tự
vũ tiền châu
Xem chi tiết
Nguyễn Vũ Thúy Hiền
Xem chi tiết
Ngô quang minh
Xem chi tiết
bí ẩn
Xem chi tiết
Dragon Boy
Xem chi tiết
Đạm Đoàn
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết
Nguyễn An
Xem chi tiết
✿.。.:* ☆:**:.Lê Thùy Lin...
Xem chi tiết