Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thành Vinh

giải pt sau: |x-2|(x-1)(x+1)(x+2)=4

Kiệt Nguyễn
14 tháng 2 2020 lúc 8:37

Consider two cases:

+) If \(x\ge2\)then \(x-2\ge0\Rightarrow\left|x-2\right|=x-2\)

Equation becomes: \(\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=4\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=4\)(1)

Put \(x^2-4=u\)

(1) becomes: \(u\left(u+3\right)=4\)

\(\Leftrightarrow u^2+3u-4=0\)

We have \(\Delta=3^2+4.4=25,\sqrt{\Delta}=5\)

\(\Rightarrow\orbr{\begin{cases}u=\frac{-3+5}{2}=1\\u=\frac{-3-5}{2}=-4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2-4=1\\x^2-4=-4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2=5\\x^2=0\end{cases}}\Rightarrow x\in\left\{\pm\sqrt{5};0\right\}\)

+) If \(x< 2\)then \(x-2< 0\Rightarrow\left|x-2\right|=2-x\)

Equation becomes: \(\left(2-x\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=-4\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=-4\)(2)

Put \(x^2-4=v\)

(2) becomes: \(v\left(v+3\right)=-4\)

\(\Leftrightarrow v^2+3v+4=0\)

But \(v^2+3v+4=\left(v+\frac{3}{2}\right)^2+\frac{7}{4}>0\)

So case two has no value

So \(x\in\left\{\pm\sqrt{5};0\right\}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thành Vinh
Xem chi tiết
Siin
Xem chi tiết
Nguyễn Thị Mai Hương
Xem chi tiết
Gia Bảo
Xem chi tiết
Nguyễn acc 2
Xem chi tiết
Đỗ Thị Trà My
Xem chi tiết
Truong thuy vy
Xem chi tiết
Nguyễn acc 2
Xem chi tiết
Hồ Hữu Duyy
Xem chi tiết