Giải PT sau áp dụng bất đẳng thức
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}-3\sqrt{3}x=6\sqrt{3}\)
GPT:
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}-3\sqrt{3}x=6\sqrt{3}\)
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}=3\sqrt{3}\left(x+2\right)\)
Tính giá trị nhỏ nhất của
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+17}+x3\sqrt{3}\)
1. cho x, y, x >0 và x + y + z =< \(\frac{3}{2}\)
CMR : \(\sqrt{\left(X^2+\frac{1}{X^2}\right)}+\sqrt{Y^2+\frac{1}{Y^2}}+\sqrt{Z^2+\frac{1}{Z^2}}\)LỚN HƠN HOẶC BẰNG \(\frac{3}{2}\sqrt{17}\)
2. TÌM MAX : \(B=3-2x+\sqrt{\left(5-x^2+9x\right)}\)
3. Tìm min : \(M=\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}+3\sqrt{3x}\)
\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\) = \(\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
\(3x^3-17x^2-8x+9+\sqrt{3x-2}-\sqrt{7-x}\) = 0
GIẢI PHƯƠNG TRÌNH
giải pt
\(3x^3-17x^2-8x+9+\sqrt{3x-2}-\sqrt{7-x}=0 \)
giải pt\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x-8}+\sqrt[3]{x^2-8x-1}=2\)
giải phương trình
a) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-\sqrt{2x-1}}=4\)
b) \(4x^2+3x+3=4x\sqrt{x+3}+2\sqrt{2x-1}\)
c) \(\sqrt{x-4}+\sqrt{6-x}=x^2-11x+27\)
d) \(\sqrt{13x^2-6x+10}+\sqrt{5x^2-13x+\frac{17}{2}}+\sqrt{17x^2-48x+36}=\frac{1}{2}\left(36x-8x^2-21\right)\)
e) \(\sqrt{\frac{6}{3-x}}+\sqrt{\frac{8}{2-x}}=6\)