\(ĐKXĐ:x\ne-1\)
Đặt: \(u=\frac{5x-x^2}{x+1}\) , \(v=\frac{x^2+5}{x+1}\)
\(\Rightarrow u+v=5\)
Từ pt đã cho,ta có hệ:
\(\hept{\begin{cases}u+v=5\\uv=-14\end{cases}}\)
Vậy: u và v là nghiệm của pt: \(t^2-5t-14=0\)
Giải pt trên ,ta đc: \(t_1=-2,t_2=7\)
Hay: u=-2 , v=7 hoặc u=7 , v= -2
Thế vào phép đặt u và v ta đc:
\(x=\frac{7\pm\sqrt{57}}{2}\)
=.= hok tốt!!