(6x+7)2.2.(3x+4).6.(x+1) = 72
=> (6x+7)2. (6x+8).(6x+6)= 72
=> (6x+7)2. (6x+7 + 1)(6x+7 - 1) = 72
=> (6x+7)2. [(6x+7)2 - 1] = 72
=> (6x+7)4 - (6x+7)2 = 72 => (6x+7)4 -9.(6x+7)2 + 8.(6x+7)2 - 72 = 0
=> (6x+7)2. [(6x+7)2 - 9] + 8.[(6x+7)2 - 9] = 0
=> [(6x+7)2 + 8].[(6x+7)2 - 9] = 0
=> (6x+7)2 - 9 = 0 Vì (6x+7)2 + 8 > o với mọi x
=> (6x+7)2 = 9 => 6x + 7 = 3 hoặc -3
6x+ 7 =3 => x = -2/3
6x+7 = -3 => x = -5/3
Vậy x = -2/3; -5/3
(6x +7)2(3x +4)(x +1) =6 <=> (6x +7)2(6x +8)(x +1) = 12
Đặt 6x +7 =t => 6x + 8 = t +1 ; x =(t - 7)/6 ; x +1 = (t -1)/6
Pt trở thành : \(t^2\left(t+1\right)\frac{t-1}{6}=12\Leftrightarrow t^4-t^2-72=0\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\)
<=> \(t^2-9=0\)( vì t2 +8 >0) <=> t = 3 hay t = -3
t =3 => 6x +7 = 3 => x = -2/3
t= -3 => 6x +7 = -3 => x = -5/3