1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
Giai pt
1) \(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
2) \(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}-3=0\)
3) \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
4) \(x^2+\sqrt{x+5}=5\)
5) \(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
Giúp e giải pt:
2x-3+\(\frac{3x-1}{\sqrt{3-2x^2}+2-x}=0\)
\(^{x^2+4x+1=\left(x+4\right)\sqrt{x^2+1}}\)
\(2\left(x-2\right)\sqrt{x-1}=3x^2+5x-4-4x\sqrt{2x-1}\)
Giải các phương trình sau: (hệ phương trình)
1.\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
2.\(\sqrt{3-4x}+\sqrt{4x+1}=-16x^2-8x+1\)
3. \(\sqrt{x^2-2x+5}+\sqrt{x+1}=2\)
4. \(\left(-4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\)
5. \(\sqrt{-4x-1}+\sqrt{4x^2+8x+3}=-4x^2-4x\)
6. \(\left(x-3\right)\left(x+1\right)+4\left(x-3\right)\sqrt{\frac{x+1}{x-3}}=-3\)
7. \(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2\sqrt{x^2}\)
Ai làm được 4 bài hoặc nhiều hơn mik sẽ tick nha :)
help me now
\(\left(x-x^2\right)\left(\sqrt{x-2}+2\right)=2x^3-5x^2+5x-2\)
\(\sqrt{2x-3+\sqrt{4x-7}}+\sqrt{2x+9+5\sqrt{4x-7}}=4\sqrt{2}\)
\(\left(\sqrt{3x+1}-\sqrt{x+2}\right)\left(\sqrt{3x^2+7x+2}+9\right)=6x-3\)
giải phương trình
1)\(\sqrt{9\left(x-1\right)}=21\)
2)\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)
3)\(\sqrt{2x}-\sqrt{50}=0\)
4)\(\sqrt{4x^2+4x+1}=6\)
5)\(\sqrt{\left(x-3\right)^2}=3-x\)
Giải hpt sau:
a)\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}+7=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)
Giải phương trình
5.\(\left(4x-1\right)\sqrt{x^2+1}=2x^2-2x+2\)
6.\(3\sqrt{x^3+8}=2\left(x^2-3x+2\right)\)
7.\(6+3\sqrt{x-2}=2x+\sqrt{x+6}\)
giải phương trình :
1, \(\sqrt{4-x^2}+2\sqrt[3]{x^4-4x^3+4x^2}=\left(x-1\right)^2+1-\left|x\right|\)
2, \(2x^3+9x^2-6x\left(1+2\sqrt{6x-1}\right)+2\sqrt{6x-1}+8=0\)
3, \(x^3-3x+1=\sqrt{8-3x^2}\)
4, \(\left(4x^2+x-1\right)\sqrt{x^2+x+2}=\left(4x^2+3x+5\right)\sqrt{x^2-1}\)
5, \(\sqrt[3]{3-x^3}=2x^3+x-3\)
6, \(\sqrt[3]{x^2+3x+3}+\sqrt[3]{2x^2+3x+2}=6x^2+12x+8\)
7, \(\frac{x^2+2x-8}{x^2-2x+3}=\left(x+1\right)\left(\sqrt{x+2}-2\right)\)
8, \(\frac{4x-1}{\sqrt{4x-3}}+\frac{11-2x}{\sqrt{5-x}}=\frac{15}{2}\)
9, \(x^2-4x+14+\sqrt{x+4}=2\sqrt{1+12x}+\sqrt{1+\sqrt{1+12x}}\)