\(x^4-6x^2-8x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Vậy tập nghiệm \(S=\left\{-1;3\right\}\)
\(x^4-3x^3+3x^3-9x^2+3x^2-9x+x-3=0\)
\(x^3\left(x-3\right)+3x^2\left(x-3\right)+3x\left(x-3\right)+\left(x-3\right)=0\)
\(\left(x-3\right)\left(x^3+3x^2+3x+1\right)=0\)
\(\left(x-3\right)\left(x+1\right)^3=0\)
=> \(x-3=0\)hoặc \(x+1=0\)
=> x=3 hoặc x=-1