\(ĐKXĐ:x\ge2;x\le-2\\ \sqrt{x^2-4}-x^2+4=0\\ \Leftrightarrow\sqrt{x^2-4}-\left(x^2-4\right)=0\\ \Leftrightarrow\sqrt{x^2-4}\left(1-\sqrt{x^2-4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-4}=0\\1-\sqrt{x^2-4}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2-4=0\\\sqrt{x^2-4}=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2-4=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm2\\x^2=5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{matrix}\right.\)
Vậy pt có tập nghiệm `S={+- 2 ; +- sqrt5}`