Ta có pt <=> \(2\sqrt{x-2}+2\sqrt{y+2009}+2\sqrt{z-2010}=x+y+z\)
<=> \(x-2-2\sqrt{x-2}+1+y+2009-2\sqrt{y+2009}+1+z-2010-2\sqrt{z-2010}+1=0\)
<=> \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2009}-1\right)^2+\left(\sqrt{z-2010}-1\right)^2=0\)
...
^_^
Ta có pt <=> \(2\sqrt{x-2}+2\sqrt{y+2009}+2\sqrt{z-2010}=x+y+z\)
<=> \(x-2-2\sqrt{x-2}+1+y+2009-2\sqrt{y+2009}+1+z-2010-2\sqrt{z-2010}+1=0\)
<=> \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2009}-1\right)^2+\left(\sqrt{z-2010}-1\right)^2=0\)
...
^_^
Giải pt :\(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)
Mấy anh chị giải hộ phương trình này giúp em với. cảm ơn
cho x,y,z>0 và xy+yz+xz=1
tính Q=\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}}\)
Giải hệ phương trình
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{2017}\\\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)=3+\sqrt[3]{xyz}}\end{cases}}\)
Cho x,y,z > 0. Tìm :
a) \(maxA=\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\left(ĐK:x+y+z=1\right)\)
b) \(maxB=\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{x^2}}\left(ĐK:x+y\le1\right)\)
c) \(max,minC=2x+\sqrt{5-x^2}\)
Cho x,y,z dương thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
Tìm GTLN của biểu thức P=\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2\)
GIÚP VỚI Ạ!!!!!!! Hứa TICK
giải phương trình
1) (x2+1) + 2(y2 + 2xy + yz + z2+ x+ y) = 2016(2z - 2016)
2)\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
3) x2 - 9x - 6\(\sqrt{x}\) +34=0
4)\(\sqrt{xy}+3\sqrt{y}+2\sqrt{z}-4=x+y+z\)
5) (6x+7)2(3x+4)(x+1)=6
6 )x4 - x3- 10x2+2x+4=0
cho x,y,z >0 và x+y+z=25 và \(x^2+y^2+z^2\) =233
giá trị của : \(x\sqrt{\frac{\left(196+y^2\right)\left(196+z^2\right)}{196+x^2}}+y\sqrt{\frac{\left(196+x^2\right)\left(196+z^2\right)}{196+y^2}}+z\sqrt{\frac{\left(196+y^2\right)\left(196+x^2\right)}{196+z^2}}\) là:
Cho các số dương x, y, z thỏa mãn:\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất của
\(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{xz\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)