ĐKXĐ: \(x\ge10\). Đặt \(\sqrt{x-2}=a\ge0;\sqrt{x-7}=b\ge0;\sqrt{x+5}=c\ge0;\sqrt{x-10}=d\ge0\).Ta thấy:
(x - 2) - (x - 7) = 5 ; (x + 5) - (x - 10) = 15 do đó ta có: \(3\left(a^2-b^2\right)=c^2-d^2\)mà a + b = c + d. Suy ra:
\(3\left(a-b\right)\left(a+b\right)-\left(c-d\right)\left(c+d\right)=0\Leftrightarrow3\left(a+b\right)\left(3a-3b-c+d\right)=0\)
Nếu a + b = 0 thì x đồng thời bằng 2 và bằng 7 nên vô lí.
Nếu 3a - 3b - c + d = 0 => 3a - 3b = c - d (1) mà a + b = c + d (2). Trừ từng vế của (1) và (2) ta có: 2a - 4b = -2d <=> d + a = 2b
\(\Leftrightarrow\sqrt{x-10}+\sqrt{x-2}=2\sqrt{x-7}\Leftrightarrow2x-12+2\sqrt{\left(x-10\right)\left(x-2\right)}=4x-28\)
\(\Leftrightarrow x-8=\sqrt{x^2-12x+20}\Leftrightarrow x^2-16x+64=x^2-12x+20\Leftrightarrow x=11\) (thỏa mãn)
Vậy x = 11