Điều kiện xác định của phương trình: \(a\ne\pm b\)
Biến đổi phương trình:
(x - a)(a - b) + (x - b)(a + b) = - 2ab
<=> ax - bx - a2 + ab + ax + bx - ab - b2 = - 2ab
<=> 2ax = a2 + b2 - 2ab
<=> 2ax = (a - b)2 (1)
Nếu \(a\ne0\) thì \(x=\frac{\left(a-b\right)^2}{2a}\)
Nếu a = 0 thì (1) có dạng 0x = b2. Do \(a\ne b\) nên \(b\ne0\)nên phương trình vô nghiệm.
Kết luận:
Nếu \(\hept{\begin{cases}a\ne b\\a\ne\pm b\end{cases}}\) thì \(S=\left\{\frac{\left(a-b\right)^2}{2a}\right\}\)
Còn lại, \(S=\varnothing\)