Mình nghĩ tại vì :
\(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}=\left(\frac{1}{x}+\frac{1}{x+1}\right)-\left(\frac{1}{x+2}+\frac{1}{x+3}\right)\)
Xét trường hợp \(x\)nguyên dương ta có :
\(\frac{1}{x}>\frac{1}{x+2}\)và \(\frac{1}{x+1}>\frac{1}{x+3}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{x+1}>\frac{1}{x+2}+\frac{1}{x+2}\)
\(\Rightarrow\)\(\left(\frac{1}{x}+\frac{1}{x+1}\right)-\left(\frac{1}{x+2}+\frac{1}{x+3}\right)>0\)
Xét trường hợp \(x\)nguyên âm ta có :
\(\frac{1}{x}< \frac{1}{x+2}\)và \(\frac{1}{x+1}< \frac{1}{x+3}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{x+1}< \frac{1}{x+2}+\frac{1}{x+3}\)
\(\Rightarrow\)\(\left(\frac{1}{x}+\frac{1}{x+1}\right)-\left(\frac{1}{x+2}+\frac{1}{x+3}\right)< 0\)
Loại trường hợp \(x=0\)vì mẫu phải khác \(0\)
Mình nghĩ vậy :))
Ta có :
\(\frac{5}{x}+\frac{4}{x+1}=\frac{3}{x+2}+\frac{2}{x+3}\)
\(\Leftrightarrow\)\(\left(\frac{5}{x}+1\right)+\left(\frac{4}{x+1}+1\right)=\left(\frac{3}{x+2}+1\right)+\left(\frac{2}{x+3}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+5}{x}+\frac{x+5}{x+1}-\frac{x+5}{x+2}-\frac{x+5}{x+3}=0\)
\(\Leftrightarrow\)\(\left(x+5\right)\left(\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3}\right)=0\)
Vì \(\left(\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{x+3}\right)\ne0\)
\(\Rightarrow\)\(x+5=0\)
\(\Rightarrow\)\(x=-5\)
Vậy \(x=-5\)
Phùng Minh Quân bạn có thể chứng minh cái trong ngoặc khác 0 không?
à cái trong ngoặc mình nhầm nhé xin lỗi :
\(\left(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}\right)\) mới đúng :')
nhưng tại sao cái trong ngoặc lại khác 0 vậy