\(\left(x+2\right)\left(x+3\right)\left(x+8\right)\left(x+12\right)=4x^2\)
\(pt\Leftrightarrow\left(x^2+14x+24\right)\left(x^2+11x+24\right)=4x^2\)
Dễ thấy x=0 ko là nghiệm chia 2 vế cho x2
\(\left(x+14+\frac{24}{x}\right)\left(x+11+\frac{24}{x}\right)=4\)
Đặt \(x+\frac{24}{x}=t\) thì ta có:
\(\Rightarrow\left(t+14\right)\left(t+11\right)=4\)
\(\Leftrightarrow t^2+25t+154=4\Leftrightarrow t^2+25t+150=0\)
\(\Leftrightarrow\left(t+10\right)\left(t+15\right)=0\)\(\Rightarrow\orbr{\begin{cases}t=-10\\t=-15\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{24}{x}=-10\\x+\frac{24}{x}=-15\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x+\frac{24}{x}+10=0\\x+\frac{24}{x}+15=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+10x+24=0\\x^2+15x+24=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-4;x=-6\\x=\frac{-15\pm\sqrt{129}}{2}\end{cases}}\)