Đặt x-6=a
=> x-8=a-2
Ta có: a4+(a-2)4=16
=> a4+a4+16a2+16+8a2-32a-8a2=16
=> 2a4+24a2-32a-8a3=0
=> 2a(a3+12a-16-4a2)=0
=> a( a3-2a2-2a2+4a+8a-16)=0
=> a( a-2)(a2-2a+8)=0
Vì a2-2a+8 = a2-2a+1+7=(a-1)2+7 \(\ge\)0 với mọi a.
=> a = 0 hoặc a-2 =0
=> a=0 hoặc a= 2
=> x= 6 hoặc x=8
Vậy phương trình có nghiệm x= 6 hoặc x=8.