ĐK: x > 4 3
Đặt: x 3 − 4 = u 2 x 2 + 4 3 = v ( v > 1 ) ⇒ v 3 − 4 = x 2
Khi đó phương trình (1) ⇔ u 2 3 = v 2 + 4 2 hay u 3 − 4 = v 2 (4)
Từ (2), (3), (4) ta có hệ phương trình:
x 3 − 4 = u 2 v 3 − 4 = x 2 u 3 − 4 = v 2 ⇒ x 3 − v 3 = u 2 − x 2 ( 5 ) u 3 − x 3 = v 2 − u 2 ( 6 )
Vì x, u, v > 1 nên giả sử x ≥ v thì từ (5) ⇒ u ≥ x
Có u ≥ x nên từ (6) ⇒ v ≥ u
Do đó: x ≥ v ≥ u ≥ x ⇒ x = v = u
Mặt khác, nếu x < v thì tương tự ta có x < v < u < x (vô lí)
Vì x = u nên:
x 3 − 4 = x 2 ⇔ x − 2 x 2 + x + 2 = 0 ⇔ x = 2 (thỏa mãn)
Vậy phương trình (1) có nghiệm duy nhất x = 2.