\(\left(x^2-x+1\right)+\left(x^2-2x+3\right)+...+\left(x^2-100x+199\right)=300\)
\(\Leftrightarrow100x^2-100x+\frac{\left[\left(199-1\right):2+1\right]\left(199+1\right)}{2}=300\)
\(\Leftrightarrow100x^2-100x+10000=300\)
\(\Leftrightarrow100x^2-100x+9700=0\)
\(\Leftrightarrow100\left(x^2-x+97\right)=0\)
\(\Leftrightarrow x^2-x+97=0\)
\(\Leftrightarrow x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+97=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{387}{4}=0\left(1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{387}{4}\ge\frac{387}{4}>0;\forall x\)
\(\Rightarrow\)pt\(\left(1\right)\)vô nghiệm
Vậy pt trên vô nghiệm