Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vũ linh

giải phương trình nghiệm nguyên xy2+2xy-8y+x=0

giúp em với ạ

Nguyễn Đức Trí
31 tháng 7 2023 lúc 1:07

\(xy^2+2xy-8y+x=0\)

\(\Leftrightarrow xy^2+2xy+x=8y\)

\(\Leftrightarrow x\left(y^2+2y+1\right)=8y\)

\(\Leftrightarrow x\left(y+1\right)^2=8y\)

\(\Leftrightarrow\left(y+1\right)^2=\dfrac{8y}{x}=2^2.\dfrac{2y}{x}\left(x\ne0\right)\left(1\right)\)

Ta thấy \(VP=\left(y+1\right)^2\) là số chính phương lẻ hoặc chẵn

mà \(VP=2^2.\dfrac{2y}{x}\) là số chính phương chẵn \(\left(2^2;\dfrac{2y}{x}⋮2\right)\) và \(\dfrac{2y}{x}\) cũng là số chính phương

\(\Rightarrow\left(y+1\right)^2\) là số chính phương chẵn

\(\Rightarrow y\) là số lẻ

Vậy để thỏa \(\left(1\right)\) ta thấy \(y=1;x=2\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right)\right\}\left(x;y\in Z\right)\)

Mạnh Nguyễn
30 tháng 7 2023 lúc 23:59
Nhân cả hai vế của phương trình với y, ta được:

xy^3 + 2xy^2 - 8y^2 + x = 0

Đặt z=xy, ta được:

z^3 + 2z^2 - 8z + x = 0

Phương trình này có thể được giải bằng cách sử dụng phương pháp phân tích đa thức. Ta có:

z = (1 + 2 \sqrt{2}) \pm (1 - 2 \sqrt{2}) \sqrt{3}

Thay z bằng xy, ta được:

xy = (1 + 2 \sqrt{2}) \pm (1 - 2 \sqrt{2}) \sqrt{3}

Giải nghiệm nguyên cho x và y, ta được:

(x, y) = (1, 1), (1, -1), (-1, 1), (-1, -1)

Vậy, nghiệm nguyên của phương trình xy2+2xy−8y+x=0(1,1),(1,−1),(−1,1),(−1,−1).

thumb_upthumb_down

share

Tìm trên Google

 

Nguyễn Đức Trí
31 tháng 7 2023 lúc 7:02

Bổ sung \(x=-2;y=-1\) thỏa \(\left(1\right)\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(-2;-1\right);\left(2;1\right)\right\}\)


Các câu hỏi tương tự
___ F4L
Xem chi tiết
Hảải Phongg
Xem chi tiết
dieu kinh tran hoang
Xem chi tiết
Kha Nguyễn
Xem chi tiết
Minh Triều
Xem chi tiết
Thu Trần Thị
Xem chi tiết
Khùng hóa học
Xem chi tiết
An Vy
Xem chi tiết
Phạm Nhật Huyền
Xem chi tiết