Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tiểu an Phạm

giải phương trình nghiệm nguyên \(x^2-2y\left(x-y\right)=2\left(x+1\right)\)

thanh
8 tháng 5 2018 lúc 21:17

chuyển vế ta có:

\(x^2-2xy+2y^2-2x-1=x^2-2x\left(y+1\right)+2y^2-1\)

tinh penta ta có:

\(penta'=\left(y+1\right)^2-\left(2y^2-1\right)=-y^2+2y+2=-\left(y+1\right)^2+3\)

để pt có nghiệm nguyên thi penta' phai lon hon hoac bang 0

co penta' nho hon hoac bang 3

từ 2 điều trên ta có: 0 nho hon hoac bang penta' <3

theo penta' ta có \(x_1=y+1-\sqrt{-\left(y+1\right)^2+3}\)

\(x_2=y+1+\sqrt{-\left(y+1\right)^2+3}\)\

mà x nguyên, y nguyên nên ta có: 

\(\sqrt{-\left(y+1\right)^2+3}thuocZ\) =>\(-\left(y+1\right)^2+3\) la SCP

ma 0 nho hon hoac bang \(-\left(y+1\right)^2+3\) <3

=>\(-\left(y+1\right)^2+3\) =0 hoặc =1

, nếu trường hợp nào cho cả 2 nghiệm x,y nguyên thì chọn

Pham Quoc Cuong
8 tháng 5 2018 lúc 20:48

PT\(\Leftrightarrow x^2-2xy+2y^2=2x+2\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2-2x=2\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(y-x\right)+1+y^2-2y+1=4\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(y-1\right)^2=4\)

Do x,y nguyên => Các hạng tử là số CP

Ta có các trường hợp 

(y-1)204
(x-y-1)240

+) (y-1)2=0 

=> y= 1 

=> x= 0 hoặc 4

+) (y-1)2=4

=> y= -1 hoặc 3

=> (x;y)= (2;-1);(4;3)

tiểu an Phạm
8 tháng 5 2018 lúc 20:54

cách của bạn đúng nhưng bạn sai dấu ở dấu <=> thứ 3


Các câu hỏi tương tự
Lee Yeong Ji
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Lee Yeong Ji
Xem chi tiết
Yurika
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Ngân
Xem chi tiết
Thanh Tâm
Xem chi tiết
Cúc Nguyễn
Xem chi tiết