\(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)=24x^2\)
\(\Leftrightarrow x^4-24x^3+203x^2-720x+900=24x^4\)
\(\Leftrightarrow x^4-24x^3+203x^2-720x+900-24x^2=0\)
\(\Leftrightarrow x^4-24x^3+179x^3-720x+900=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-15\right)\left(x^2-7x+30\right)=0\)
có: \(x^2-7x+30\ne0\), nên:
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-15=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=15\end{cases}}\)