Có: \(\Delta=\left[-\left(\sqrt{2}-\sqrt{5}\right)\right]^2-4.\left(-\sqrt{10}\right)=7+2\sqrt{10}=\left(\sqrt{5}+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{\Delta}=\)\(\sqrt{5}+\sqrt{2}\)
\(\Rightarrow x_1=\frac{\sqrt{2}-\sqrt{5}+\sqrt{5}+\sqrt{2}}{2}=\frac{2\sqrt{2}}{2}=\sqrt{2}\)
\(x_2=\frac{\sqrt{2}-\sqrt{5}-\sqrt{5}-\sqrt{2}}{2}=\frac{-2\sqrt{5}}{2}=-\sqrt{5}\)
Vậy \(x=\left\{\sqrt{2};-\sqrt{5}\right\}\)