Giải các phương trình sau:
a) e 2 + ln x = x + 3;
b) e 4 - ln x = x;
c) (5 − x).log(x − 3) = 0
Giải các phương trình sau trên tập số phức:
a) (1 + 2i)x – (4 – 5i) = –7 + 3i
b) (3 + 2i)x – 6ix = (1 – 2i)[x – (1 + 5i)]
Câu 1: Tìm GTLN và GTNN của hàm số: y= ex + 2x -3ln(x + 1) , \(x\in[1;3]\)
Câu 2: Giải phương trình và bất phương trình sau:
a) \(log_{\sqrt{3}}(x-4)=1+log_3\left(x-2\right)\)
b) \(4^x-3.2^{x+1}+5\ge0\)
Giải các bất phương trình sau:
a) (2x − 7)ln(x + 1) > 0;
b) (x − 5)(logx + 1) < 0;
c) 2 log 3 2 x + 5 log 2 2 x + log 2 x – 2 ≥ 0
d) ln(3 e x − 2) ≤ 2x
Cho hai phương trình
log 2 9 x - 4 = x log 2 3 + log 2 3 và 3 2 x - 3 x + 1 - 4 = 0 . Biết nghiệm chung của hai phương trình có dạng x = log a b ,với a , b > 0 , a + b < 10 .Khi đó
A. a+b= 9
B. a+b = 6
C. a+b = 5
D. a+b = 7
Tập nghiệm của bất phương trình x ln x + e ln 2 x ≤ 2 e 4 có dạng S = [a; b]. Tích a.b bằng
A. 1
B. e
C. e 3
D. e 4
Cho ba điểm A(1; 2; 1), B(2; -1; 1), C(0; 3; 1) và đường thẳng d: x - 3 = y - 1 = z 2
Viết phương trình mặt phẳng (P) đi qua A, song song với d, sao cho khoảng cách từ B đến (P) bằng khoảng cách từ C đến (P).
Giải các phương trình sau trên tập số phức:
a) (3 + 4i)x = (1 + 2i)(4 + i)
b) 2ix + 3 = 5x + 4i
c) 3x(2 – i) + 1 = 2ix(1 + i) + 3i
Cho điểm A(-1; 2; -3), vectơ a → = (6; -2; -3) và đường thẳng d có phương trình: x = 1 + 3 t y = - 1 + 2 t z = 3 - 5 t Viết phương trình mặt phẳng (α) chứa điểm A và vuông góc với giá của a → .