giải phương trình \(2x^2-4x+\sqrt{5x+6}+\sqrt{7x+11}=9\)
1) Giải phương trình: \(2x^2+\sqrt{5x+6}+\sqrt{7x+11}=4x+9\)
2) Với a,b,c là các số thực dương thỏa mãn a+b<3. Chứng minh: \(\sqrt{a+3}+2\sqrt{b+3}< 6\)
giải phương trình:
a) \(\sqrt{4x^2+4x+3}=8\)
b) \(\sqrt{5x^3+5x^2+7}=9\)
c) \(\dfrac{3}{5}\sqrt{x^5+4x^3+2x^2}=18\)
Giải phương trình
\(4x^2+\sqrt{2x+9}=9\)
\(\left(x+1\right)\left(x+3\right)=5\sqrt{5x+11}\)
\(\sqrt{4x+9}+3\left(2x+1\right)=2x^2\)
Giải các phương trình sau:
a) \(\sqrt{4x^2-9}=2\sqrt{2x+3}\)
b) \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
c) \(\sqrt{4x+20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
giải phương trình
\(x^2+3\sqrt{x^2-1}=\sqrt{x^2-x+1}\)
\(\sqrt{x^2+2x}+\sqrt{2x+1}=\sqrt{3x^2+4x+1}\)
\(3x^2+21x+18+2\sqrt{x^2+7x+7}=2\)
\(\sqrt{5x^2-14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
Giải phương trình:
a)\(\sqrt{\sqrt{5}-\sqrt{3x}}=\sqrt{8+2\sqrt{15}}\)
b)\(\sqrt{4x-20}-3\sqrt{\dfrac{x-5}{9}}=\sqrt{1-x}\)
c) \(\sqrt{4x+8}+2\sqrt{x+2}-\sqrt{9x+18}=1\)
d) \(\sqrt{x^2-6x+9}+x=11\)
e) \(\sqrt{3x^2-4x+3}=1-2x\)
f) \(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\)
g) \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
giải phương trình
1)\(\sqrt{9\left(x-1\right)}=21\)
2)\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)
3)\(\sqrt{2x}-\sqrt{50}=0\)
4)\(\sqrt{4x^2+4x+1}=6\)
5)\(\sqrt{\left(x-3\right)^2}=3-x\)