Giải hpt :
\(\hept{\begin{cases}x^3-3x^2+2x-5=y\\y^3+3y^2-2y-5=z\\z^3+3z^2+2z-3=x\end{cases}}\)
Giải hệ phương trình:
\(1.\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(2.\hept{\begin{cases}2x^3+2z^2+3z+3=0\\2y^3+2x^2+3x+3=0\\2z^3+2y^2+3y+3=0\end{cases}}\)
giải hệ phương trình :
3x^2+2y+4=2z(x+3)
3y^2+2z+4=2x(y+3)
3z^2+2x+4=2y(z+3)
Rút gọn: M = \(\frac{5x^5+4x^4+3x^3+2}{4x^4+3x^3+2x^2+z}+\frac{4y^4+3y^3+2y^2+y}{5y^5+4y^4+3y^3+2}+\frac{5y^5+4z^4+3z^3+2}{4z^4+3z^3+2z^2+z}\)
Giải hệ phương trình: \(\hept{\begin{cases}x-3z^2x-3z+z^3=0\\y-3x^2y-3x+x^3=0\\z-3y^2z-3y+y^3=0\end{cases}}\)
Cho các số thực dương x,y,z thỏa mãn:x^2+y^2+z^2≥1/3
CMR: x^3/2x+3y+5z + y^3/2y+3z+5x + z^3/2z+3x+5y ≥1/30
GIÚP GẤP
giải hệ pt a)2x+3y=5 và 4x-5y=1
b)xy-x-y=3 và x^2+y^2-xy=1
c)x+2y+3z=4 và 2x+3y-4z=-3 và 4x+y-z=-4
Cho x, y, z dương thỏa mãn: \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\)
Chứng minh: \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)
Cho x,y,z thuộc R+ thỏa mãn:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\)
CMR: \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)