Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Tiến Đạt

giai hpt

\(\hept{\begin{cases}3x^3-y^3=\frac{1}{x+y}\\x^2+y^2=1\end{cases}}\)

Nguyễn Tất Đạt
3 tháng 9 2019 lúc 22:16

\(\hept{\begin{cases}3x^3-y^3=\frac{1}{x+y}\left(1\right)\\x^2+y^2=1\left(2\right)\end{cases}}\)(ĐKXĐ: \(x;y\in R;x\ne-y\))

Pương trình (1) tương đương \(2x^3+\left(x-y\right)\left(x^2+xy+y^2\right)=\frac{1}{x+y}\)

Thế (2) vào phương trình trên ta được: \(2x^3+\left(x-y\right)\left(1+xy\right)=\frac{1}{x+y}\)

\(\Leftrightarrow2x^3\left(x+y\right)+\left(x^2-y^2\right)\left(1+xy\right)-1=0\)

\(\Leftrightarrow2x^4+3x^3y+x^2-y^2-xy^3-1=0\)

\(\Leftrightarrow\left(2x^4+x^3y-x^2y^2-x^2\right)+\left(2x^3y+x^2y^2-xy^3-xy\right)+\left(2x^2+xy-y-1\right)=0\)

\(\Leftrightarrow\left(x^2+xy+1\right)\left(2x^2+xy-y^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+xy+1=0\\2x^2+xy-y^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x^2+xy+y^2=0\left(3\right)\\x^2+xy-2y^2=0\left(4\right)\end{cases}}\)

+) Ta thấy \(\Delta_{\left(3\right)}=-7< 0.\)Suy ra phương trình (3) vô nghiệm.

+) Phương trình (4) tương đương \(\left(x-y\right)\left(x+2y\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-2y\end{cases}}\)

Từ đó thế vào phương trình (2) ta được:

\(\orbr{\begin{cases}2y^2=1\\5y^2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\pm\sqrt{\frac{1}{2}}\\y=\pm\sqrt{\frac{1}{5}}\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm\frac{\sqrt{2}}{2}\\y=\pm\frac{\sqrt{2}}{2}\end{cases}}\left(h\right)\hept{\begin{cases}x=\mp\frac{2\sqrt{5}}{5}\\y=\pm\frac{\sqrt{5}}{5}\end{cases}}\)(thỏa mãn ĐKXĐ)

Vậy tập nghiệm của hệ phương trình cho là \(S=\left\{\left(\pm\frac{\sqrt{2}}{2};\pm\frac{\sqrt{2}}{2}\right);\left(\mp\frac{2\sqrt{5}}{5};\pm\frac{\sqrt{5}}{5}\right)\right\}.\)

Nguyễn Tất Đạt
3 tháng 9 2019 lúc 22:21

Sửa: \(\left(2x^4+x^3y-x^2y^2-x^2\right)+\left(2x^3y+x^2y^2-xy^3-xy\right)+\left(2x^2+xy-y^2-1\right)=0\)

Mình gõ thiếu số 2 :)

Nguyễn Tiến Đạt
5 tháng 9 2019 lúc 16:33

Cảm ơn bn nhieu


Các câu hỏi tương tự
vu tien dat
Xem chi tiết
misu
Xem chi tiết
binn2011
Xem chi tiết
Thiên An
Xem chi tiết
Nhi Đào Quỳnh
Xem chi tiết
Die Devil
Xem chi tiết
marivan2016
Xem chi tiết
Đào Linh Chi
Xem chi tiết
Lương Liêm
Xem chi tiết