\(\left(x-7\right)^{10}-\left(x-7\right)^{x+11}=0\)\(\Leftrightarrow\left(x-7\right)^{10}\left[1-\left(x-7\right)^{x+1}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-7\right)^{10}=0\\1-\left(x-7\right)^{x+1}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\\left(x-7\right)^{x+1}=1\end{cases}}\)
Xét \(\left(x-7\right)^{x+1}=1\)ta có:
TH1: \(x+1=0\)và \(x-7\inℤ\)\(\Rightarrow x=-1\left(tm\right)\)
TH2: \(x-7=-1\)và \(x+1\)là số dương chẵn \(\Rightarrow x=6\left(tm\right)\)
TH3: \(x-7=1\)và \(x+1\inℕ^∗\) \(\Rightarrow x=8\left(tm\right)\)
Vậy \(x\in\left\{-1;6;7;8\right\}\)