Giải hệ sau:
\(\begin{cases}\sqrt{x^2+91}=\sqrt{y-2}+y^2\\\sqrt{y^2+91}=\sqrt{x-2}+x^2\end{cases}\)
Giải hệ phương trình a, \(\begin{cases}8\left(x+y\right)=x^2+2y^2+3xy\\4\sqrt{2-x}+\sqrt{3-y}=2x^2-y^2+5\end{cases}\)
b,\(\begin{cases}y^2-2\sqrt{\left(x^2+1\right)\left(x-1\right)}\\y^2+x\sqrt{x^2+8}+x^2=4\end{cases}=y\left(\sqrt{x^2+1}-2\sqrt{x-1}\right)\)
Tìm tập xác định hàm số :
a. \(y=\left(3^x-9\right)^{-2}\)
b. \(y=\sqrt{\log_{\frac{1}{3}}\left(x-3\right)-1}\)
c. \(y=\sqrt{\log_3\left(\sqrt{x^2-3x+2}+4-x\right)}\)
Cho :
\(x=\frac{1}{3}\left(\sqrt[3]{\frac{23+\sqrt{513}}{4}}+\sqrt[3]{\frac{23-\sqrt{513}}{4}}-1\right)\)
Hãy tính : \(A=x^3+x^2+1\)
Tìm tập xác định của hàm số :
\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)
Chứng minh rằng : \(\sqrt[4]{49+\sqrt{20\sqrt{6}}}+\sqrt[4]{49-\sqrt{20\sqrt{6}}}=2\sqrt{3}\)
Giúp mình giải 3 pt này nha:
1. \(x^2-2x=2\sqrt{2x-1}\)
2. \(\sqrt{x+\sqrt{2x-1}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}}\)
3. \(7x^2+7x=\sqrt{\frac{4x+9}{28}}\)
Mình cám ơn rất nhiều
Nhờ mọi người giúp mình bài này, ai biết phương pháp ép tích càng tốt ạ.!
\(\frac{3}{\sqrt{2-x}+1}\)\(\frac{3}{\sqrt{2+x}+1}=x^4\)\(-3x^2\)