Giải hệ pt: \(\hept{\begin{cases}x^2y+8y+2=5y^2+\sqrt{5y-6}+\sqrt{8x+y-2}\\2\sqrt{y}+y^2=\sqrt{3x+y}+xy\end{cases}}\)
Giúp mình với mọi người!!!
Giải hệ:
\(\hept{\begin{cases}xy-y^2=\sqrt{3y-1}-\sqrt{x+2y-1}\\x^2y-4xy^2+7xy-5x-y+2=0\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}3x^2-2y^2-xy+12x-17y-15=0\\\sqrt{2-x}+\sqrt{6-x-x^2}=y+\sqrt{2y+5}-\sqrt{y+4}\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}\left(2x-y\right)\left(x^2+y^2\right)+2x^2+6=xy+3y\\\sqrt{3\left(x^2+y\right)+7}+\sqrt{5x^2+5y+14}=4-2x-x^2\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}3\sqrt{x+2y-2}+\sqrt{y-2x}=5\\2\sqrt{y-2x}-5y-10x-4=0\end{cases}}\)
\(\left\{{}\begin{matrix}8\sqrt{xy-2y}-8y+4=\left(x-y\right)^2\\2\sqrt{2y-y^2}\left(\sqrt{8-2x}-2\sqrt{2y}+1\right)=4y+5\sqrt{2-y}-10\sqrt{x-2}\end{matrix}\right.\)
cho các số thực dương x,y thỏa mãn điều kiện x+y=2016.Tìm giá trị nhỏ nhất của biểu thức:
P=\(\sqrt{5x^2+xy+3y^2}+\sqrt{3x^2+xy+5y^2}+\sqrt{x^2+xy+2y^2}+\sqrt{2x^2+xy+y^2}\)
giải hệ phương trình \(\hept{\begin{cases}2x^2-y^2+xy-5x+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\end{cases}}\)
Giải hệ bằng phương pháp phân tích nhân tử
a) \(\left\{{}\begin{matrix}x^2+2y=xy+4\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-2xy+x+y=0\\x^4-4x^2y+3x^2+y^2=0\end{matrix}\right.\)